
Broadcasting dynamic metadata content to
external web pages using AMI (ATLAS Metadata
Interface) embeddable components

Fabian Lambert1,1, Jérôme Odier1, Jérôme Fulachier1, on the behalf of the ATLAS

Collaboration

1Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3,

53 rue des Martyrs, 38026, Grenoble Cedex, FRANCE

Abstract. AMI (ATLAS Metadata Interface) is a generic ecosystem for
metadata aggregation, transformation and cataloguing. Often, it is

interesting to share up-to-date metadata with other content services such as
wikis. Here, the cross-domain solution implemented in the AMI Web

Framework is described: a system of embeddable controls, communicating
with the central AMI service and based on the AJAX and CORS

technologies. The main available controls and their basic usage are also
described.

1 Introduction

This paper describes the AMI Web Framework (AWF), a JavaScript Web framework part
of the ATLAS Metadata Interface (AMI) ecosystem, designed to develop custom, dynamic
and embeddable Web application interfaces connected to the central AMI Web service.
AMI [1, 2] is an ecosystem designed for metadata bookkeeping and mainly used by the
ATLAS experiment [3] at the Large Hadron Collider (LHC). Thousands of physicists use
several AMI tools daily which are parts of the offline software of the ATLAS experiment,
in order to display or manage their data from SQL or NoSQL databases. As an example, the
AMI dataset discovery tool is used to catalog the official ATLAS datasets available for
analysis. It has been the official dataset bookkeeping tool of the experiment since 2006. As
another example, the AMI-Tags tool permits setting up the configuration parameters used
by data processing and analysis jobs.
AMI is a mature ecosystem, since its basic architecture has been maintained for over

fifteen years. The ecosystem continuously scales both hardware and software infrastructure
so that the quality of service remains high [4]. Nevertheless, several requests made by the
ATLAS physicist community, concerning either data sharing on various supports like wikis
or totally new Web applications, required a complete redesign of the ecosystem interface
subsystem.

1 Corresponding author: fabian.lambert@lpsc.in2p3.fr

Copyright 2018 CERN for the benefit of the ATLAS Collaboration.

Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 04004 (2019) https://doi.org/10.1051/epjconf/201921404004
CHEP 2018

The AWF provides mechanisms for building controls and applications within an object-
oriented paradigm. In the following, the main components of the AMI ecosystem are
recalled. Then, the AWF subsystems are described, especially the embeddable control
mechanism. Finally the benefits of the technical choices are discussed in terms of flexibility
and scalability.

2 The AMI ecosystem overview

The AMI architecture is described in detail in other publications [1, 5, 6]. In this section,
the main characteristics of the AMI ecosystem are recalled and the new control paradigm
for Web applications is described.

2.1 Overview of the ecosystem architecture

The first AMI ecosystem architecture principles were designed between 2002 and 2003. In
order to withstand the inevitable evolutions in technology and requirements, a n-tier
architecture (Figure 1) was chosen. The layers of the n-tier architecture are well decoupled,
making AMI a scalable and flexible ecosystem for developing metadata-oriented
applications.

Fig. 1. AMI multilayered architecture.

The Java AMI “Core” layer provides an API to interact with data sources. This layer
provides a Metadata Querying Language (MQL) to easily query the registered database
catalogues. It uses the JDBC driver reflexion properties to provide end-applications a
simplified view of the databases, hiding their internal structures.
Three categories of software use the AMI “Core” layer. The first category consists of

the AMI task subsystem. It runs Java tasks and, for the ATLAS collaboration, is used to
collect production metadata and to populate AMI catalogs. It has to be deployed along with
the Java Core on our task servers. The second category is a set of lightweight clients which
can be deployed independently of the Java core on the user computers, just having to be
configured to point to an AMI Web Service endpoint. The last category consists of Web
applications based on the AMI Web Framework. It is described in the following sections.

2

EPJ Web of Conferences 214, 04004 (2019) https://doi.org/10.1051/epjconf/201921404004
CHEP 2018

The AWF provides mechanisms for building controls and applications within an object-
oriented paradigm. In the following, the main components of the AMI ecosystem are
recalled. Then, the AWF subsystems are described, especially the embeddable control
mechanism. Finally the benefits of the technical choices are discussed in terms of flexibility
and scalability.

2 The AMI ecosystem overview

The AMI architecture is described in detail in other publications [1, 5, 6]. In this section,
the main characteristics of the AMI ecosystem are recalled and the new control paradigm
for Web applications is described.

2.1 Overview of the ecosystem architecture

The first AMI ecosystem architecture principles were designed between 2002 and 2003. In
order to withstand the inevitable evolutions in technology and requirements, a n-tier
architecture (Figure 1) was chosen. The layers of the n-tier architecture are well decoupled,
making AMI a scalable and flexible ecosystem for developing metadata-oriented
applications.

Fig. 1. AMI multilayered architecture.

The Java AMI “Core” layer provides an API to interact with data sources. This layer
provides a Metadata Querying Language (MQL) to easily query the registered database
catalogues. It uses the JDBC driver reflexion properties to provide end-applications a
simplified view of the databases, hiding their internal structures.
Three categories of software use the AMI “Core” layer. The first category consists of

the AMI task subsystem. It runs Java tasks and, for the ATLAS collaboration, is used to
collect production metadata and to populate AMI catalogs. It has to be deployed along with
the Java Core on our task servers. The second category is a set of lightweight clients which
can be deployed independently of the Java core on the user computers, just having to be
configured to point to an AMI Web Service endpoint. The last category consists of Web
applications based on the AMI Web Framework. It is described in the following sections.

2.2 Evolution of Web applications in AMI

The first AMI Web application prototype (Tag Collector) was written in 2001 with the PHP
[7] server-side scripting language. However, due to PHP design patterns, the code for the
business logic and for the HTML user interfaces were mixed together, making the whole
system difficult to maintain. To address this concern, a first Java layered architecture was
designed. It was composed of a Java “core” layer for the business logic and another one,
using the XSL Transformation (XSLT) technology [8], for the HTML interface generation.
Nevertheless, although the two layers were separated, making application evolution easier,
they remained strongly coupled and were both processed server-side, affecting the whole
system performance. To improve applications performance, from 2013, the XSLT layer
was progressively replaced by modern Web 2.0 technologies.

2.3 AMI Web Framework

The AMI Web framework (AWF) layer is based on JavaScript, the Twitter Bootstrap [9]
CSS framework, the JQuery library [10] and on a proprietary JavaScript implementation of
the Twig template engine [11]. AWF permits loading and releasing arbitrary resources (like
CSS, JS, JSON, …), AMI graphical controls and applications. Both controls and
applications follow a Model-View-Controller (MVC) pattern (described section 3.3) in
order to simplify developments by decoupling data model, visualisation and application
specific code. AWF uses Asynchronous JavaScript And XML (AJAX) for interacting with
the AMI server via an unique single Java servlet in a secured and authenticated session.
This servlet is configured to permit requests using cross-origin resource sharing (CORS)
mechanism. The idea is to shift the processing of the HTML Web interfaces to the client,
keeping only the business logic on the server. It gives AWF components the capability to
access the AMI service from everywhere (external pages, personal pages, wikis, … see
Figure 2).

Fig. 2. AWF controls embedded in external Web page.

3 AWF controls

Controls are standalone components that can be associated to build a Web application or
another composite control. The principles of the AWF control are described in this section.

3

EPJ Web of Conferences 214, 04004 (2019) https://doi.org/10.1051/epjconf/201921404004
CHEP 2018

3.1 Setting up AWF

To create a new Web application using AWF controls, a developer just has to pull the code
from the official AWF GIT repository and execute few commands to generate basic control
or sub-application skeletons.

Setuping AWF
curl https://rawgit.com/ami-team/AMIWebFramework/master/tools/build.xml > build.xml
ant setup-prod
ant make-home-page
Creating a new control skeleton
ant make-control
Creating a new sub-application skeleton
ant make-subapp

Fig. 3. AWF environment setup.

The commands, displayed in Figure 3, generate the following directories and files:
• index.html, the home page starting controls and/or applications
• controls, the directory containing the controls
• subapps, the directory containing the sub-applications
• js/jquery.min.js, the JQuery library
• js/ami.min.js, the AWF library

3.2 Embeddable control mechanism

There are two prerequisites to embed an AWF JavaScript control in an external Web page
(for example a Wiki page). First, loading the JQuery library, the only dependency of AWF,
then loading AWF library itself (Figure 4).

<head>
<script type="text/javascript" src="https://ami.in2p3.fr/app/js/jquery.min.js"></script>
<script type="text/javascript" src="https://ami.in2p3.fr/app/js/ami.min.js?embedded"></script>
</head>

Fig. 4. Loading the AWF.

Also, in the generated skeleton, two handler methods of the amiWebApp namespace
object are overridden:

• amiWebApp.onReady is called as soon as AWF is initialized and ready to execute
the user code. Within this method, miscellaneous resources (css, js, twig files, AMI
controls, ...) needed by the main application are loaded using the AWF method
amiWebApp.loadResources (Figure 5).

• amiWebApp.onRefresh is called each time at sign-in / sign-out or when user
authorization changes. This method has one argument, isAuth, a boolean variable inherited
from AWF that indicates whether the user is authenticated or not. Then specific code,
usually for rendering one or more graphical components in an HTML division, can be
executed (Figure 6).

Finally the method amiWebApp.start is called for starting the AWF (Figure 7) Web
application. This function has an optional parameter to specify the endpoint URL of the
AMI Web service.

4

EPJ Web of Conferences 214, 04004 (2019) https://doi.org/10.1051/epjconf/201921404004
CHEP 2018

3.1 Setting up AWF

To create a new Web application using AWF controls, a developer just has to pull the code
from the official AWF GIT repository and execute few commands to generate basic control
or sub-application skeletons.

Setuping AWF
curl https://rawgit.com/ami-team/AMIWebFramework/master/tools/build.xml > build.xml
ant setup-prod
ant make-home-page
Creating a new control skeleton
ant make-control
Creating a new sub-application skeleton
ant make-subapp

Fig. 3. AWF environment setup.

The commands, displayed in Figure 3, generate the following directories and files:
• index.html, the home page starting controls and/or applications
• controls, the directory containing the controls
• subapps, the directory containing the sub-applications
• js/jquery.min.js, the JQuery library
• js/ami.min.js, the AWF library

3.2 Embeddable control mechanism

There are two prerequisites to embed an AWF JavaScript control in an external Web page
(for example a Wiki page). First, loading the JQuery library, the only dependency of AWF,
then loading AWF library itself (Figure 4).

<head>
<script type="text/javascript" src="https://ami.in2p3.fr/app/js/jquery.min.js"></script>
<script type="text/javascript" src="https://ami.in2p3.fr/app/js/ami.min.js?embedded"></script>
</head>

Fig. 4. Loading the AWF.

Also, in the generated skeleton, two handler methods of the amiWebApp namespace
object are overridden:

• amiWebApp.onReady is called as soon as AWF is initialized and ready to execute
the user code. Within this method, miscellaneous resources (css, js, twig files, AMI
controls, ...) needed by the main application are loaded using the AWF method
amiWebApp.loadResources (Figure 5).

• amiWebApp.onRefresh is called each time at sign-in / sign-out or when user
authorization changes. This method has one argument, isAuth, a boolean variable inherited
from AWF that indicates whether the user is authenticated or not. Then specific code,
usually for rendering one or more graphical components in an HTML division, can be
executed (Figure 6).

Finally the method amiWebApp.start is called for starting the AWF (Figure 7) Web
application. This function has an optional parameter to specify the endpoint URL of the
AMI Web service.

amiWebApp.onReady = function() {
 var result = new $.Deferred();
 amiWebApp.loadResources(['ctrl:table']).done(function(controls){
 myTable = new controls[0];
 result.resolve();
 }).fail(function(){ result.reject();});
 return result
};

Fig. 5. Loading AWF “table” graphical control.

amiWebApp.onRefresh = function(isAuth) {
 if(isAuth) {
 var result = new $.Deferred();
 myTable.render('#myDiv',{
 parameter: paramValue,
 ...}).always(function(){ result.resolve(); });
 return result;
 } else { $('#myDiv').empty();};

Fig. 6. Rendering AWF “table” graphical control.

amiWebApp.start({
 endpoint_url: 'https://ami.in2p3.fr/AMI/servlet/...'
});

Fig. 7. Starting the AWF.

3.3 Control pattern structure

AWF makes it possible to develop applications and controls with an MVC pattern.

3.3.1 Model

The Model is based on the CORS cross-domain AMI Web Service. It consists of a set of
business objects called AMI commands, server-side. These commands permit
adding/removing/updating (and much more) records in databases and can be called either
by Web applications or other clients like the official AMI python client pyAMI [12]. The
AMI Web Service returns the command results to the client in a JSON message that can be
then processed by the Controller.

3.3.2 View

The View is based on the AMI-Twig template engine and the Twitter Bootstrap 4 CSS
framework. It renders data provided by the Controller and dynamically generates HTML 5
fragments using Twig templates (Figure. 8).

{% for row in linkedElementRowset %}
 <tr><td class="text-center">
 {{row | json_jspath('..field{.@name==="entity"}.$')[0] | e}}
 </td></tr>
{% endfor %}

Fig. 8. AMI-Twig and JSPath in action!

5

EPJ Web of Conferences 214, 04004 (2019) https://doi.org/10.1051/epjconf/201921404004
CHEP 2018

3.3.3 Controller

The Controller, written in JavaScript, is the central part of an AWF control. It uses standard
technologies such as AJAX (for executing AMI commands) and external JavaScript libraries
such as JQuery, JSPath [13], … It communicates with the central AMI Web Service,
sending on-demand “AMI command” requests, and getting corresponding responses as
JSON messages. It holds primitives to process these JSON data and transmits them to the
View in order to update the applications.

3.4 Embedding controls in a web page

Benefiting from the CORS cross-domain AJAX technology, one can embed a JavaScript
code in a Web page to interact with the central AMI servlet (Figure 8). AWF requires few
HTML containers to be defined within the <body> (Figure 9):

• A <nav> structure with the id ami_login_content where is loaded the AWF
authentication control.

• A <div> with the id ami_alert_content to display error, warning or information
messages issued from AWF.

• And at last, additional <div>s are needed to display user controls.

<head><script>
 var myTable;
 myTable.render('#myDiv',…
 </script></head>
<body>
 <nav class="navbar navbar-expand-lg navbar-light bg-light">
 <ul class="navbar-nav ml-auto" id="ami_login_content">
 </nav>
 <div id="ami_alert_content"></div>
 <div id="myDiv"></div>
</body>

Fig. 9. Embeding AWF “table” graphical control in a Web page.

4 AMI controls in action

4.1 The ATLAS PMG View for MC dataset

“PMG View” control is currently used by ATLAS physicists, embedded in the ATLAS
collaboration twiki pages. It provides physicists with a customized view of their Monte-
Carlo data, corresponding to their needs. It is a composite control made essentially with
three other controls provided by AWF: “Accordion”, “Tab” and “Table” (Figure 10).

Fig. 10. The “PMG view” composite control for ATLAS.

6

EPJ Web of Conferences 214, 04004 (2019) https://doi.org/10.1051/epjconf/201921404004
CHEP 2018

3.3.3 Controller

The Controller, written in JavaScript, is the central part of an AWF control. It uses standard
technologies such as AJAX (for executing AMI commands) and external JavaScript libraries
such as JQuery, JSPath [13], … It communicates with the central AMI Web Service,
sending on-demand “AMI command” requests, and getting corresponding responses as
JSON messages. It holds primitives to process these JSON data and transmits them to the
View in order to update the applications.

3.4 Embedding controls in a web page

Benefiting from the CORS cross-domain AJAX technology, one can embed a JavaScript
code in a Web page to interact with the central AMI servlet (Figure 8). AWF requires few
HTML containers to be defined within the <body> (Figure 9):

• A <nav> structure with the id ami_login_content where is loaded the AWF
authentication control.

• A <div> with the id ami_alert_content to display error, warning or information
messages issued from AWF.

• And at last, additional <div>s are needed to display user controls.

<head><script>
 var myTable;
 myTable.render('#myDiv',…
 </script></head>
<body>
 <nav class="navbar navbar-expand-lg navbar-light bg-light">
 <ul class="navbar-nav ml-auto" id="ami_login_content">
 </nav>
 <div id="ami_alert_content"></div>
 <div id="myDiv"></div>
</body>

Fig. 9. Embeding AWF “table” graphical control in a Web page.

4 AMI controls in action

4.1 The ATLAS PMG View for MC dataset

“PMG View” control is currently used by ATLAS physicists, embedded in the ATLAS
collaboration twiki pages. It provides physicists with a customized view of their Monte-
Carlo data, corresponding to their needs. It is a composite control made essentially with
three other controls provided by AWF: “Accordion”, “Tab” and “Table” (Figure 10).

Fig. 10. The “PMG view” composite control for ATLAS.

4.2 The ATLAS AMI-Tags selection tool

Every day the ATLAS collaboration submit a huge number of analysis tasks on the
worldwide LCG grid. AMI-Tags are used for storing software configuration parameters of
these analyses and are an essential part of the ATLAS production system. The AMI-Tags
selection tool is based on a generic search by criteria control. As a control, it can be
embedded everywhere and permits, in this specific case, selecting an AMI-Tag (i.e. a set of
configuration parameters) using a combination of dedicated search criteria (Figure 11).

Fig. 11. The “AMI-Tags selection tool” for ATLAS.

4.3 The ATLAS dataset whiteboard

Metadata about official ATLAS production datasets, Monte-Carlo or Real Data, are stored
in AMI catalogues. In 2017, physicists requested to be able to associate custom information
to any dataset record, using a twitter-like hashtag system. The “ATLAS dataset
whiteboard” is now integrated in the official ATLAS dataset selection tool, benefiting from
the AWF control embeddable capability (Figure 12).

Fig. 12. The “dataset whiteboard” control for ATLAS.

5 Outlook

AMI is a well-established and mature ecosystem, providing Web interfaces and
applications to about 3000 active users of the ATLAS collaboration. All the AMI Web
interfaces are being migrated to the new AMI Web Framework in order to benefit from its
innovations. Although the rewriting of ATLAS production interfaces should be initiated
carefully in order to ensure the continuity of service, it can be seen as a great improvement
in terms of re-usability of graphical components. AWF is well documented [14] and can be

7

EPJ Web of Conferences 214, 04004 (2019) https://doi.org/10.1051/epjconf/201921404004
CHEP 2018

used independently of the AMI core system. Since 2017, the Rosetta/Philae experiment [15,
16], in the field of Astrophysics, has expressed interest in AWF, starting to develop their
own controls with a minimum of support of the AMI Team. The team will still work on
improving AWF and adding new generic controls, in order to provide a complete set of
ready-to-use components to experiments.

Acknowledgements

Over the years we have been helped and supported by many people in the Rosetta/Philae
collaboration, and at the CC-IN2P3, in particular Osman Aidel, Philippe Cheynet, Benoît
Delaunay, Pierre-Etienne Macchi, Mattieu Puel, Yves Rogez, Mélodie Roudaud and Jean-
René Rouet.

References

1. J. Odier, J. Fulachier, F. Lambert, The AMI (Atlas Matadata Interface) 2.0 metadata
ecosystem new design principles and features, proceedings of the 23rd International
Conference on Computing in High Energy and Nuclear Physics (CHEP 2018), 9-13 July
2018, Sofia, Bulgaria, J.Phys.: Conf. Ser. (2018)

2. J. Odier, O. Aidel, S. Albrand, J. Fulachier, F. Lambert, Evolution of the architecture of the
ATLAS Metadata Interface (AMI), proceedings of the 21st International Conference on
Computing in High Energy and Nuclear Physics (CHEP 2015), 13-17 April 2015, Okinawa,
Japan, J. Phys.: Conf. Ser. 64 042040 doi:10.1088/1742-6596/898/9/092001 (2015)

3. ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,
JINST 3 S08003 doi:10.1088/1748-0221/3/08/S08003 (2008)

4. J. Odier, O. Aidel, S. Albrand, J. Fulachier, F. Lambert, Migration of the ATLAS Metadata
Interface (AMI) to Web 2.0 and cloud, proceedings of the 21st International Conference on
Computing in High Energy and Nuclear Physics (CHEP 2015), 13-17 April 2015, Okinawa,
Japan, J. Phys.: Conf. Ser. 664 062044 doi:10.1088/1742-6596/664/6/062044 (2015)

5. J. Fulachier, O. Aidel, S. Albrand, F. Lambert, Looking back on 10 years of the ATLAS
Metadata Interface, proceedings of the 20th International Conference on Computing in
High Energy and Nuclear Physics (CHEP 2013), 14-18 October 2013, Amsterdam,
Netherlands, J. Phys.: Conf. Ser. 513 042019 doi:10.1088/1742-6596/513/4/042019 (2013)

6. S. Albrand, T. Doherty, J. Fulachier, F. Lambert, The ATLAS Metadata Interface, J. Phys.:
Conf. Ser. 119 072003 doi:10.1088/1742-6596/119/7/072003 (2013)

7. “PHP” [software], http://www.php.net (accessed 2019-03-13)
8. “XSLT” [software], https://www.w3.org/TR/xslt/all/ (accessed 2019-03-13)
9. “Twitter Bootstrap” [software], http://getbootstrap.com/ (accessed 2019-03-13)

10. “JQuery” [software], http://jquery.com/ (accessed 2019-03-13)
11. “AMI-Twig.js” [software], http://ami.web.cern.ch/ami/twig/ (accessed 2019-03-13)
12. “pyAMI” [software], https://pypi.python.org/pypi/pyAMI_core/ (accessed 2019-03-13)
13. “JSPath” [software], https://github.com/dfilatov/jspath (accessed 2019-03-13)
14. “AWF” [software], https://ami.in2p3.fr/app/?subapp=document&userdata=api.html
(accessed 2019-03-13)

15. “Rosetta/Philae” [experiment], http://rosetta.esa.int/ (accessed 2019-03-13)
16. “Rosetta/Philae” [experiment], http://rosetta.jpl.nasa.gov/ (accessed 2019-03-13)

8

EPJ Web of Conferences 214, 04004 (2019) https://doi.org/10.1051/epjconf/201921404004
CHEP 2018

